Lactose permease and the alternating access mechanism.

نویسندگان

  • Irina Smirnova
  • Vladimir Kasho
  • H Ronald Kaback
چکیده

Crystal structures of the lactose permease of Escherichia coli (LacY) reveal 12, mostly irregular transmembrane α-helices surrounding a large cavity open to the cytoplasm and a tightly sealed periplasmic side (inward-facing conformation) with the sugar-binding site at the apex of the cavity and inaccessible from the periplasm. However, LacY is highly dynamic, and binding of a galactopyranoside causes closing of the inward-facing cavity with opening of a complementary outward-facing cavity. Therefore, the coupled, electrogenic translocation of a sugar and a proton across the cytoplasmic membrane via LacY very likely involves a global conformational change that allows alternating access of sugar- and H(+)-binding sites to either side of the membrane. Here the various biochemical and biophysical approaches that provide strong support for the alternating access mechanism are reviewed. Evidence is also presented indicating that opening of the periplasmic cavity is probably the limiting step for binding and perhaps transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apo-intermediate in the transport cycle of lactose permease (LacY).

The lactose permease (LacY) catalyzes coupled stoichiometric symport of a galactoside and an H(+). Crystal structures reveal 12, mostly irregular, transmembrane α-helices surrounding a cavity with sugar- and H(+)- binding sites at the apex, which is accessible from the cytoplasm and sealed on the periplasmic side (an inward-facing conformer). An outward-facing model has also been proposed based...

متن کامل

The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.

Lactose permease (LacY) is the prototype of the major facilitator superfamily (MFS) of secondary transporters. Available structures of LacY reveal a state in which the substrate is exposed to the cytoplasm but is occluded from the periplasm. However, the alternating-access transport mechanism requires the existence of a periplasm-facing state. We recently showed that inverted-topology structura...

متن کامل

Proton-coupled dynamics in lactose permease.

Lactose permease of Escherichia coli (LacY) catalyzes symport of a galactopyranoside and an H⁺ via an alternating access mechanism. The transition from an inward- to an outward-facing conformation of LacY involves sugar-release followed by deprotonation. Because the transition depends intimately upon the dynamics of LacY in a bilayer environment, molecular dynamics (MD) simulations may be the o...

متن کامل

Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane.

Many independent lines of evidence indicate that the lactose permease of Escherichia coli (LacY) is highly dynamic and that sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H(+) symport catalyzed by LacY very likely involves a global conformational change that allows alternating access of single sugar- and ...

متن کامل

Opening the periplasmic cavity in lactose permease is the limiting step for sugar binding.

The lactose permease (LacY) catalyzes galactoside/H(+) symport via an alternating access mechanism in which sugar- and H(+)-binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by opening and closing of inward- and outward-facing cavities. The crystal structures of wild-type LacY, as well as accessibility data for the protein in the membrane, prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 50 45  شماره 

صفحات  -

تاریخ انتشار 2011